

Plano de Ensino de componente curricular com carga horária EaD Plano do Componente Curricular

Curso	Componente Curricular						
Licenciatur	Matemática Computacional						
a em	Código: MATCP						
Matemática							
C.H.	C.H.	C.H.	C.H. NÃO PRESENCIAL	SÉRIE			
TOTAL	SEMANAL	PRESENCIAL					
60 HORAS	4	30	30	SEMESTRE 4			

DIAS E HORÁRIOS DAS ATIVIDADES PRESENCIAIS: <toda quinta feira das 20:40 às 22:00 no semestre 2025.2>

EMENTA

Introdução a algoritmos em uma linguagem de programação voltada para Matemática: variáveis, condicionais, laços e funções. Representação de números em ponto flutuante e noções de erros numéricos. Zeros de funções. Métodos diretos para a solução de sistemas lineares. Quadrados mínimos lineares. Interpolação.

OBJETIVOS

Geral: Desenvolver competências para o uso de linguagens de programação e métodos numéricos aplicados à resolução de problemas matemáticos.

Específicos:

- Compreender os princípios fundamentais de algoritmos e programação científica;
- Aplicar linguagens computacionais na resolução de problemas matemáticos;
- Analisar erros numéricos e limitações de precisão;
- Implementar métodos numéricos para zeros de funções e sistemas lineares;
- Utilizar softwares como MATLAB, Octave ou Python para cálculo numérico.

CONTEÚDOS

- Introdução à programação científica: variáveis, condicionais, laços e funções;
- Representação numérica e erros computacionais;
- Zeros de funções: métodos iterativos (bisseção, Newton-Raphson, secante);
- Sistemas lineares: métodos diretos e iterativos;
- Quadrados mínimos lineares;
- Interpolação polinomial e funções de ajuste;
- Aplicações com MATLAB, Octave ou Python.

PROCEDIMENTOS DIDÁTICOS

- Aulas teóricas e práticas em laboratório;
- Desenvolvimento de códigos e simulações computacionais;
- Estudos dirigidos e exercícios de aplicação;
- Discussões e fóruns online sobre métodos numéricos;
- Projetos práticos e trabalhos individuais.

RECURSOS DIDÁTICOS

- Laboratório de informática;
- Softwares MATLAB, Octave e Python;
- Apostilas e tutoriais online;
- Projetor multimídia e quadro branco;
- Ambiente virtual de aprendizagem.

INSTRUMENTOS E CRITÉRIOS DE AVALIAÇÃO

- Provas escritas e práticas;
- Exercícios computacionais e relatórios;
- Projetos de programação;
- Participação em fóruns e atividades online.

BIBLIOGRAFIA BÁSICA

- CASTRO CUNHA, M. C. Métodos numéricos. 2. ed. Campinas: Editora da UNICAMP, 2000.
- QUARTERONI, A.; SALERI, F. Cálculo científico com MATLAB e Octave. São Paulo: Springer, 2007.
- RUGGIERO, M. A. G.; LOPES, V. L. R. Cálculo numérico: aspectos teóricos e computacionais.
 2. ed. São Paulo: Pearson Education do Brasil, 1997.

BIBLIOGRAFIA COMPLEMENTAR

- ARENALES, S.; DAREZZO, A. Cálculo numérico: aprendizagem com apoio de software. 2. ed.
 São Paulo: Cengage Learning, 2016.
- BURDEN, R. L.; FAIRES, J. D. Análise numérica. São Paulo: Cengage Learning, 2008.
- CONTE, S. D.; BOOR, C. D. Elementary numerical analysis: an algorithmic approach. 3. ed. Philadelphia: SIAM, 2018.
- GREENBAUM, A.; CHARTIER, T. P. Numerical methods: design, analysis, and computer implementation of algorithm. Princeton: Princeton University Press, 2012.
- MOLER, C. B. Numerical computing with MATLAB. Philadelphia: SIAM, 2004.

DETALHAMENTO DAS ATIVIDADES NÃO PRESENCIAIS (15 horas)

Módulo	Atividade	Semana	Objetivos de	Conteúdo	Carga
		S	Aprendizage		Horári
			m		а
1	Leitura	1 a 10	Compreender	Algoritmos, estruturas	15h
	orientada		fundamentos	de repetição e métodos	
	+		de algoritmos	de zeros de funções.	
	exercício		е		
	s práticos		implementar		
	online		métodos		
			numéricos		

			básicos.		
2	Estudo	11 a 20	Aplicar	Sistemas lineares,	15h
	dirigido +		programação	mínimos quadrados e	
	projeto		científica em	interpolação com	
	prático		resolução de	MATLAB/Octave/Pytho	
	com		sistemas	n.	
	relatório		lineares e		
			interpolação.		

Assinatura do professor